20. Convergence of Positive Series
e.1. The Ratio Test
The next test mimics the behavior of the geometric series.
Suppose \(\displaystyle \sum_{n=n_o}^\infty a_n\) is a positive series and the limit of the ratio of successive terms is \(\displaystyle \rho=\lim_{n\to\infty}\dfrac{a_{n+1}}{a_n}\).
- If \(\rho<1\), then \(\displaystyle \sum_{n=n_o}^\infty a_n\) is convergent.
- If \(\rho>1\), then \(\displaystyle \sum_{n=n_o}^\infty a_n\) is divergent.
\(\Longleftarrow\) Read this! It's easy.
\(\Longleftarrow\) The proof requires the
precise definition of the limit of a sequence.
If \(\rho=1\) the Ratio Test FAILS and says nothing about \(\displaystyle \sum_{n=n_o}^\infty a_n\).
For large \(n\), \(\dfrac{a_{n+1}}{a_n}\) is approximately \(\displaystyle \rho=\lim_{n\to\infty}\dfrac{a_{n+1}}{a_n}\). So pick some large \(N\). Then for \(n \ge N\), we have \(a_n\approx a_N \rho^{n-N}\). So we can approximate the tail of the series by \[ \sum_{n=N}^\infty a_n \approx\sum_{n=N}^\infty a_N \rho^{n-N} \] This is a geometric series which converges to \[ \sum_{n=N}^\infty a_N \rho^{n-N} =\dfrac{a_N}{1-\rho} \] provided \(|\rho| \lt 1\) and diverges if \(|\rho| \ge 1\). So it is not surprizing that the original series also convegres or diverges when \(\rho\) is less than or greater than \(1\) with the exception that the borderline case of \(\rho=1\) is indeterminate instead of divergent.
Notice that the conclusions of the Ratio Test are the same as for a geometric series \(\displaystyle \sum_{n=n_o}^\infty a\rho^n\) whose ratio is \(\rho\), except that the borderline case of \(\rho=1\) is indeterminate instead of divergent.
Determine if \(\displaystyle \sum_{n=0}^\infty \dfrac{2^n}{n!}\) is convergent or divergent.
We have \(a_n=\dfrac{2^n}{n!}\) and \(a_{n+1}=\dfrac{2^{n+1}}{(n+1)!}\).
So: (Notice how we divide by \(a_n\) by multiplying by its reciprocal.)
\[\begin{aligned}
\rho&=\lim_{n\to\infty}\dfrac{a_{n+1}}{a_n}
=\lim_{n\to\infty}\dfrac{2^{n+1}}{(n+1)!}\cdot\dfrac{n!}{2^n} \\
&=\lim_{n\to\infty}\dfrac{2}{n+1}=0
\end{aligned}\]
Since \(\rho=0 \lt 1\), the series
\(\displaystyle \sum_{n=0}^\infty \dfrac{2^n}{n!}\) converges.
\(\dfrac{n!}{(n+1)!}=\dfrac{n\cdots1}{(n+1)n\cdots1}=\dfrac{1}{n+1}\)
Determine if \(\displaystyle \sum_{n=0}^\infty \dfrac{3^{2n+1}}{2n+1}\) is convergent or divergent.
We have \(a_n=\dfrac{3^{2n+1}}{2n+1}\) and \(a_{n+1}=\dfrac{3^{2(n+1)+1}}{2(n+1)+1}=\dfrac{3^{2n+3}}{2n+3}\). So \[\begin{aligned} \rho&=\lim_{n\to\infty}\dfrac{a_{n+1}}{a_n} =\lim_{n\to\infty}\dfrac{3^{2n+3}}{2n+3}\cdot\dfrac{2n+1}{3^{2n+1}} \\ &=\lim_{n\to\infty}\dfrac{3^2(2n+1)}{2n+3}=9 \end{aligned}\] Since \(\rho=9>1\), the series \(\displaystyle \sum_{n=0}^\infty \dfrac{3^{2n+1}}{2n+1}\) diverges.
Determine if \(\displaystyle \sum_{n=0}^\infty \dfrac{n}{2n^2+1}\) is convergent or divergent.
We have \(a_n=\dfrac{n}{2n^2+1}\) and \(a_{n+1}=\dfrac{n+1}{2(n+1)^2+1}\). So \[\begin{aligned} \rho&=\lim_{n\to\infty}\dfrac{a_{n+1}}{a_n} =\lim_{n\to\infty}\dfrac{n+1}{2(n+1)^2+1}\cdot\dfrac{2n^2+1}{n} \\ &=\lim_{n\to\infty}\dfrac{2n^2+1}{2(n+1)^2+1}\cdot \lim_{n\to\infty}\dfrac{n+1}{n}=1\cdot1=1 \end{aligned}\] Since \(\rho=1\), the Ratio Test fails and we need to use some other test to determine the convergence.
One way is to use the Integral Test. The function \(f(n)=\dfrac{n}{2n^2+1}\) is continuous, positive and decreasing and \[ \int_0^\infty \dfrac{n}{2n^2+1}\,dn =\left. \dfrac{1}{4}\ln(2n^2+1)\right|_0^\infty=\infty \] So \(\displaystyle \sum_{n=0}^\infty \dfrac{n}{2n^2+1}\) is divergent.
Another way is to use the Limit Comparison Test. Since \(a_n=\dfrac{n}{2n^2+1}\approx\dfrac{1}{2n}\), we compare to \(\displaystyle \sum_{n=0}^\infty b_n=\sum_{n=0}^\infty \dfrac{1}{n}\) which is the harmonic series which is divergent. So we compute the limit: \[ \lim_{n\to\infty}\dfrac{a_n}{b_n} =\lim_{n\to\infty}\dfrac{n}{2n^2+1}\dfrac{n}{1}=\dfrac{1}{2} \] Since \(0 \lt \dfrac{1}{2} \lt \infty\) we know \(\displaystyle \sum_{n=0}^\infty \dfrac{n}{2n^2+1}\) is also divergent.
Determine if \(\displaystyle \sum_{n=1}^\infty \dfrac{n}{3^n}\) is convergent or divergent.
\(\displaystyle \sum_{n=1}^\infty \dfrac{n}{3^n}\) is convergent.
We have \(a_n=\dfrac{n}{3^n}\) and \(a_{n+1}=\dfrac{n+1}{3^{n+1}}\). So \[\begin{aligned} \rho=\lim_{n\to\infty}\dfrac{a_{n+1}}{a_n} =\lim_{n\to\infty}\dfrac{n+1}{3^{n+1}}\cdot\dfrac{3^n}{n} \\ =\lim_{n\to\infty}\dfrac{n+1}{3n}=\dfrac{1}{3} \end{aligned}\] Since \(\rho=\dfrac{1}{3}< 1\), the series \(\displaystyle \sum_{n=0}^\infty \dfrac{n}{3^n}\) converges.
Determine if \(\displaystyle \sum_{n=1}^\infty \dfrac{2^nn!}{(n+1)!}\) is convergent or divergent.
\(\displaystyle \sum_{n=1}^\infty \dfrac{2^nn!}{(n+1)!}\) is divergent.
We have \(a_n=\dfrac{2^nn!}{(n+1)!}\) and \(a_{n+1}=\dfrac{2^{n+1}(n+1)!}{(n+2)!}\). So \[\begin{aligned} \rho&=\lim_{n\to\infty}\dfrac{a_{n+1}}{a_n} =\lim_{n\to\infty}\dfrac{2^{n+1}(n+1)!}{(n+2)!}\cdot\dfrac{(n+1)!}{2^nn!} \\ &=\lim_{n\to\infty}\dfrac{2(n+1)}{n+2}=2 \end{aligned}\] Since \(\rho=2 \gt 1\), the series \(\displaystyle \sum_{n=1}^\infty \dfrac{n!2^n}{(n+1)!}\) diverges by the ratio test.
Notice that the Divergence Test will also work, since \[ \lim_{n\to\infty} \dfrac{2^nn!}{(n+1)!} =\lim_{n\to\infty} \dfrac{2^n}{n+1}=\infty \ne 0 \]
Heading
Placeholder text: Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum